Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

"जाने का अधिकार, जीने का अधिकार"
Mazdoor Kisan Shakti Sangathan
"The Right to Information, The Right to Live"

"पुराने को छोड़ नये के तरफ"
Jawaharlal Nehru
"Step Out From the Old to the New"

"ज्ञान एक ऐसा खजाना है जो कभी चुराया नहीं जा सकता है"
Bhartrhari—NitiSatakam
"Knowledge is such a treasure which cannot be stolen"
Indian Standard

ORDINARY PORTLAND CEMENT,
33 GRADE — SPECIFICATION
(Fifth Revision)
FOREWORD

This Indian Standard (Fifth Revision) was adopted by the Bureau of Indian Standards, after the draft finalized by the Cement and Concrete Sectional Committee had been approved by the Civil Engineering Division Council. This standard was first published in 1951 and subsequently revised in 1958, 1967, 1976 and 1989. This revision incorporates the experience gained with the use of this standard and brings the standard in line with the latest developments in this field.

Since the fourth revision of this standard, a large number of amendments were issued from time-to-time in order to modify various requirements based on experience gained with the use of the standard and the requirements of the users, and also keeping in view the raw materials available in the country and found suitable for the manufacture of cement. The important amendments included: use of performance improvers for addition during clinker grinding stage, incorporation of requirement of chloride content for the cement used in structures other than prestressed concrete, permitting use of 25 kg, 10 kg, 5 kg, 2 kg and 1 kg bags for packing of cement, and requirements of packing cement for export. In view of the large number of amendments, the Sectional Committee decided to bring out this fifth revision of the standard incorporating all these amendments so as to make it more convenient for the users. Further, following are the significant modifications incorporated in this revision:

a) Requirement for insoluble residue has been specified as 5.0 percent, maximum irrespective of addition of performance improver(s) or otherwise.

b) An upper limit of compressive strength at 28 days, equal to the minimum requirement plus 15 MPa, has been incorporated.

c) SO$_3$ content requirement has been revised to 3.5 percent maximum irrespective of C$_3$A content, primarily to accommodate use of coal/pet coke as fuel which may have higher sulphur content; subject to the cement conforming to all the requirements of the standard.

d) A clause has been introduced requiring manufacturer to furnish a certificate indicating alkali content if required by the purchaser.

e) Requirement of marking of type and amount of performance improver(s) on the bag has been incorporated.

f) Requirement of testing the cement samples at the earliest but not later than 3 months since the receipt of samples for testing, has been included.

With the increase in SO$_3$ content limit in this revision, suitable caution needs to be exercised for limiting the sulphates in concrete in accordance with the provision of IS 456 : 2000 ‘Code of practice for plain and reinforced concrete (fourth revision)’.

Quantity of cement packed in bags and the tolerance requirements for the quantity of cement packed in bags shall be in accordance with the relevant provisions of the Standards of Weights and Measures (Packaged Commodities) Rules, 1977 and B-1.2 (see Annex B). Any modification in these rules in respect of tolerance on quantity of cement would apply automatically to this standard.

This standard contains Sl No. (viii) of Table 2 and 12.2.1 which give option to the purchaser and Sl No. (v) of Table 3 and 9.2, 9.3, 9.4 and 9.4.3, which call for agreement between the purchaser and the supplier.

The composition of the technical Committee responsible for the formulation of this standard is given in Annex C.

For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test or analysis, shall be rounded off in accordance with IS 2 : 1960 ‘Rules for rounding off numerical values (revised)’. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.
1 SCOPE

This standard covers the manufacture and chemical and physical requirements of 33 grade ordinary Portland cement.

2 REFERENCES

The standards given in Annex A contain provisions which, through reference in this text, constitute provisions of this standard. At the time of publication, the editions indicated were valid. All standards are subject to revision and parties to agreements based on this standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated in Annex A.

3 TERMINOLOGY

For the purpose of this standard, the definitions given in IS 4845 shall apply.

4 MANUFACTURE

4.1 Ordinary Portland cement, 33 grade shall be manufactured by intimately mixing together calcareous and argillaceous and/or other silica, alumina or iron oxide bearing materials, burning them at a clinkering temperature and grinding the resultant clinker so as to produce a cement capable of complying with this standard. No material shall be added after burning, other than gypsum (natural mineral or chemical, see Note), water, performance improver(s), and not more than a total of 1.0 percent of air-entraining agents or other agents including colouring agents, which have proved not to be harmful.

NOTE — Chemical gypsum shall be added provided that the performance requirements of the final product as specified in this standard are met with.

4.1.1 Limit of addition of performance improver shall be as given in Table 1 and shall be inclusive of 1 percent additives as mentioned above.

If a combination of above performance improvers is added, the maximum limit of total addition shall be 5 percent.

5 CHEMICAL REQUIREMENTS

When tested in accordance with the methods given in

Table 1 Performance Improvers

(Clause 4.1.1)

<table>
<thead>
<tr>
<th>Sl No.</th>
<th>Performance Improver</th>
<th>Percentage Addition by Mass, Max</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>i)</td>
<td>Fly ash</td>
<td>5</td>
<td>Conforming to IS 3812 (Part 1)</td>
</tr>
<tr>
<td>ii)</td>
<td>Granulated slag</td>
<td>5</td>
<td>Conforming to IS 12089</td>
</tr>
<tr>
<td>iii)</td>
<td>Silica fume</td>
<td>5</td>
<td>Conforming to IS 15388</td>
</tr>
<tr>
<td>iv)</td>
<td>Limestone</td>
<td>5</td>
<td>CaCO$_3$ content calculated from CaO content shall not be less than 75 percent when tested in accordance with IS 1760 (Part 3)</td>
</tr>
<tr>
<td>v)</td>
<td>Rice husk ash</td>
<td>5</td>
<td>a) Reactive silica shall not be less than 80 percent when tested as per IS 3812 (Part 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>b) Pozzolanic activity index shall not be less than 90 percent when tested as per 10 of IS 1727</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>c) Loss on ignition shall not be more than 5.0 percent when tested as per IS 1727</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>d) Silicon dioxide (SiO$_2$) plus aluminium oxide (Al$_2$O$_3$) in percent by mass shall not be less than 94.0 percent when tested as per IS 1727</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>e) Loss on ignition shall not be more than 2.0 percent when tested as per IS 1727</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>f) Total alkalis as sodium oxide (as Na$_2$O equivalent) in percent by mass shall not be more than 1.5 percent when tested as per IS 4032</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>g) Particles retained on 45 micron IS sieve (wet sieving) shall not be more than 1.5 percent when tested as per IS 1727</td>
</tr>
</tbody>
</table>
6 PHYSICAL REQUIREMENTS

Ordinary Portland cement, 33 grade shall comply with the physical requirements given in Table 3.

Table 2 Chemical Requirements for Ordinary Portland Cement, 33 Grade
(Foreword and Clause 5)

<table>
<thead>
<tr>
<th>Sl No.</th>
<th>Characteristic</th>
<th>Requirement</th>
<th>Method of Test, Ref to IS 4031 (Part)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>i)</td>
<td>Ratio of percentage of lime to percentages of silica, alumina and iron oxide, when calculated by the formula: $\frac{2.8 \text{SiO}_2 + 1.2 \text{Al}_2\text{O}_3 + 0.65 \text{Fe}_2\text{O}_3}{\text{CaO} - 0.7 \text{SO}_3}$</td>
<td>0.66-1.02</td>
<td>-</td>
</tr>
<tr>
<td>ii)</td>
<td>Ratio of percentage of alumina to that of iron oxide, Min</td>
<td>0.66</td>
<td>-</td>
</tr>
<tr>
<td>iii)</td>
<td>Insoluble residue, percent by mass, Max</td>
<td>5.0</td>
<td>-</td>
</tr>
<tr>
<td>iv)</td>
<td>Magnesia, percent by mass, Max</td>
<td>6.0</td>
<td>-</td>
</tr>
<tr>
<td>v)</td>
<td>Total sulphur content calculated as sulphuric anhydride (SO$_3$) percent by mass, Max</td>
<td>3.5</td>
<td>-</td>
</tr>
<tr>
<td>vi)</td>
<td>Loss on ignition, percent by mass, Max</td>
<td>5.0</td>
<td>-</td>
</tr>
<tr>
<td>vii)</td>
<td>Chloride content, percent by mass, Max</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>viii)</td>
<td>Alkali content</td>
<td>0.05 (for prestressed structures, see Note)</td>
<td>-</td>
</tr>
</tbody>
</table>

NOTE — Alkali aggregates reactions have been noticed in aggregates in some parts of the country. On large and important jobs where the concrete is likely to be exposed to humid atmosphere or wetting action, it is advisable that the aggregate be tested for alkali aggregate reaction. In the case of reactive aggregates, the use of cement with alkali content below 0.6 percent expressed as sodium oxide (Na$_2$O), is recommended. Where, however, such cements are not available, use of alternative means may be resorted to for which a reference may be made to 8.2.5.4 of IS 456. If so desired by the purchaser, the manufacturer shall carry out test for alkali content.

Table 3 Physical Requirements for Ordinary Portland Cement, 33 Grade
(Foreword and Clause 6)

<table>
<thead>
<tr>
<th>Sl No.</th>
<th>Characteristic</th>
<th>Requirement</th>
<th>Method of Test, Ref to IS 4031 (Part)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>i)</td>
<td>Fineness, m2/kg, Min</td>
<td>225</td>
<td>(Part 2)</td>
</tr>
<tr>
<td>ii)</td>
<td>Soundness:</td>
<td></td>
<td>(Part 3)</td>
</tr>
<tr>
<td>a)</td>
<td>By Le Chatelier method, mm, Max</td>
<td>10</td>
<td>See Note 1</td>
</tr>
<tr>
<td>b)</td>
<td>By autoclave test method, percent, Max</td>
<td>0.8</td>
<td>-</td>
</tr>
<tr>
<td>iii)</td>
<td>Setting time:</td>
<td></td>
<td>(Part 5)</td>
</tr>
<tr>
<td>a)</td>
<td>Initial, min, Min</td>
<td>30</td>
<td>See Note 2</td>
</tr>
<tr>
<td>b)</td>
<td>Final, min, Max</td>
<td>600</td>
<td>-</td>
</tr>
<tr>
<td>iv)</td>
<td>Compressive strength, MPa (see Note 4):</td>
<td></td>
<td>(Part 6)</td>
</tr>
<tr>
<td>a)</td>
<td>72 ± 1 h, Min</td>
<td>16</td>
<td>-</td>
</tr>
<tr>
<td>b)</td>
<td>168 ± 2 h, Min</td>
<td>22</td>
<td>-</td>
</tr>
<tr>
<td>c)</td>
<td>672 ± 4 h, Min</td>
<td>33</td>
<td>-</td>
</tr>
<tr>
<td>d)</td>
<td>Max</td>
<td>48</td>
<td>-</td>
</tr>
<tr>
<td>v)</td>
<td>Transverse strength (optional)</td>
<td>See Notes 3 and 4</td>
<td>(Part 8)</td>
</tr>
</tbody>
</table>

NOTES

1 In the event of cements failing to comply with any one or both the requirements of soundness specified in this table, further tests in respect of each failure shall be made as described in IS 4031 (Part 3), from another portion of the same sample after aeration. The aeration shall be done by spreading out the sample to a depth of 75 mm at a relative humidity of 50 to 80 percent for a total period of 7 days. The expansion of cements so aerated shall be not more than 5 mm and 0.6 percent when tested by Le Chatelier method and autoclave test respectively.

2 If cement exhibits false set, the ratio of final penetration measured after 5 min of completion of mixing period to the initial penetration measured exactly after 20 s of completion of mixing period, expressed as percent, shall be not less than 50. In the event of cement exhibiting false set, the initial and final setting time of cement when tested by the method described in IS 4031 (Part 5) after breaking the false set, shall conform to the value given in this table.

3 By agreement between the purchaser and the manufacturer, transverse strength test of plastic mortar in accordance with the method described in IS 4031 (Part 8) may be specified. The permissible values of the transverse strength shall be mutually agreed to between the purchaser and the supplier at the time of placing the order.

4 Notwithstanding the compressive and transverse strength requirements specified as per this table, the cement shall show a progressive increase in strength from the strength at 72 h.
7 STORAGE
The cement shall be stored in such a manner as to permit easy access for proper inspection and identification, and in a suitable weather-tight building to protect the cement from dampness and to minimize warehouse deterioration (see also IS 4082).

8 MANUFACTURER'S CERTIFICATE
8.1 The manufacturer shall satisfy himself that the cement conforms to the requirements of this standard and, if requested, shall furnish a test certificate to this effect to the purchaser or his representative, within ten days of testing of the cement (except for 28 days compressive strength test results, which shall be furnished after completion of the test). The type and percentage addition of performance improver(s) shall also be indicated in the certificate.

8.2 The manufacturer shall furnish a certificate indicating the alkali content, if requested.

9 PACKING
9.1 The cement shall be packed in any of the following bags:
 a) jute sacking bag conforming to IS 2580;
 b) multi-wall paper sacks conforming to IS 11761;
 c) light weight jute conforming to IS 12154;
 d) HDPE/PP woven sacks conforming to IS 11652;
 e) jute synthetic union bags conforming to IS 12174; or
 f) any other approved composite bag.

Bags shall be in good condition at the time of inspection.

9.1.1 The net quantity of cement per bag shall be 50 kg subject to provisions and tolerance given in Annex B.

9.2 The net quantity of cement per bag may also be 25 kg, 10 kg, 5 kg, 2 kg or 1 kg subject to tolerances as given in 9.2.1 and packed in suitable bags as agreed to between the purchaser and the manufacturer.

9.2.1 The number of bags in a sample taken for weighment showing a minus error greater than 2 percent of the specified net quantity shall be not more than 5 percent of the bags in the sample. Also the minus error in none of such bags in the sample shall exceed 4 percent of the specified net quantity of cement in the bag. However, the average of net quantity of cement in a sample shall be equal to or more than 25 kg, 10 kg, 5 kg, 2 kg or 1 kg, as the case may be.

9.3 Supplies of cement in bulk may be made by arrangement between the purchaser and the supplier (manufacturer or stockist).

NOTE — A single bag or container containing 1 000 kg and more, net quantity of cement shall be considered as the bulk supply of cement. Supplies of cement may also be made in intermediate bags/containers, for example, drums of 200 kg, by agreement between the purchaser and the manufacturer.

9.4 When cement is intended for export and if the purchaser so requires, packing of cement may be done in bags or in drums with net quantity of cement per bag or drum as agreed to between the purchaser and the manufacturer.

9.4.1 For this purpose, the permission of the certifying authority shall be obtained in advance for each export order.

9.4.2 The words ‘FOR EXPORT’ and the net quantity of cement per bag/drum shall be clearly marked in indelible ink on each bag/drum.

9.4.3 The packing material shall be as agreed to between the manufacturer and the purchaser.

9.4.4 The tolerance requirements for the quantity of cement packed in bags/drum shall be as given in 9.2.1 except the net quantity which shall be equal to or more than the quantity in 9.4.

10 MARKING
10.1 Each bag of cement shall be legibly and indelibly marked with the following:
 a) Manufacturer’s name and his registered trademark;
 b) The words ‘Ordinary Portland Cement, 33 Grade’;
 c) Net quantity, in kg;
 d) The words ‘Use no hooks’;
 e) Batch/Control unit number in terms of week, month and year of packing;
 f) Address of the manufacturer; and
 g) Type and percentage of performance improver(s) added, in case of addition of performance improvers.

10.2 Similar information shall be provided in the delivery advices accompanying the shipment of packed or bulk cement and on cement drums (see 9.3).

10.3 BIS Certification Marking
The cement may also be marked with the Standard Mark.

10.3.1 The use of the Standard Mark is governed by the provisions of the Bureau of Indian Standards Act,
1986 and the Rules and Regulations made thereunder. The details of conditions under which a license for the use of the Standard Mark may be granted to manufacturers or producers may be obtained from the Bureau of Indian Standards.

11 SAMPLING

11.1 A sample or samples for testing may be taken by the purchaser or his representative, or by any person appointed to superintend the work for the purpose of which the cement is required or by the latter’s representative.

11.1.1 The samples shall be taken within three weeks of the delivery and all the tests shall be commenced within one week of sampling.

11.1.2 When it is not possible to test the samples within one week, the samples shall be packed and stored in air-tight containers and tested at the earliest but not later than 3 months since the receipt of samples for testing.

11.2 In addition to the requirements of 11.1, the methods and procedure of sampling shall be in accordance with IS 3535.

11.3 The manufacturer or the supplier shall afford every facility, and shall provide all labour and materials for taking and packing the samples for testing the cement and for subsequent identification of cement sampled.

12 TESTS

12.1 The sample or samples of cement for test shall be taken as described in 11 and shall be tested in the manner described in the relevant clauses.

12.2 Independent Testing

12.2.1 If the purchaser or his representative requires independent tests, the samples shall be taken before or immediately after delivery at the option of the purchaser or his representative, and the tests shall be carried out in accordance with this standard on the written instructions of the purchaser or his representative.

12.2.2 The manufacturer/supplier shall supply, free of charge, the cement required for testing. Unless otherwise specified in the enquiry and order, the cost of the tests shall be borne as follows:

a) By the manufacturer/supplier, if the results show that the cement does not comply with the requirements of this standard, and

b) By the purchaser, if the results show that the cement complies with the requirement of this standard.

12.2.3 After a representative sample has been drawn, tests on the sample shall be carried out as expeditiously as possible (see 11.1.1 and 11.1.2).

13 REJECTION

13.1 Cement may be rejected if it does not comply with any of the requirements of this standard.

13.2 Cement remaining in bulk storage at the factory, prior to shipment, for more than six months, or cement in bags, in local storage such as, in the hands of a vendor for more than 3 months after completion of tests, shall be retested before use and shall be rejected if it fails to conform to any of the requirements of this standard.

ANNEX A

(List of referred Indian Standards)

<table>
<thead>
<tr>
<th>IS No.</th>
<th>Title</th>
<th>IS No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1760 (Part 3) : 1992</td>
<td>Methods of chemical analysis of limestone, dolomite and allied materials: Part 3 Determination of iron oxide, alumina, calcium oxide and magnesia (first revision)</td>
<td>2013</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4031</td>
<td>Methods of physical tests for hydraulic cement:</td>
</tr>
</tbody>
</table>
The average of the net quantity of cement packed in bags at the plant in a sample shall be equal to or more than 50 kg. The number of bags in a sample shall be as given below:

<table>
<thead>
<tr>
<th>Batch Size</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-150</td>
<td>20</td>
</tr>
<tr>
<td>151-280</td>
<td>32</td>
</tr>
<tr>
<td>281-500</td>
<td>50</td>
</tr>
<tr>
<td>501-1 200</td>
<td>80</td>
</tr>
<tr>
<td>1 201-3 200</td>
<td>125</td>
</tr>
<tr>
<td>3 201 and over</td>
<td>200</td>
</tr>
</tbody>
</table>

The bags in a sample shall be selected at random. For methods of random sampling, IS 4905 may be referred to.

B-1.1 The number of bags in a sample showing a minus error greater than 2 percent of the specified net quantity (50 kg) shall be not more than 5 percent of the bags in the sample. Also the minus error in none of such bags in a sample shall exceed 4 percent of the specified net quantity of cement in the bag.

NOTE — The matter given in B-1 and B-1.1 are extracts based on the Standards of Weights and Measures (Packaged Commodities) Rules, 1977 to which reference shall be made for full details. Any modification made in these Rules and other related Acts and Rules would apply automatically.

B-1.2 In case of a wagon/truck load of up to 25 tonne, the overall tolerance on net quantity of cement shall be 0 to 0.5 percent.

NOTE — The mass of a jute sacking bag to hold 50 kg of cement is 531 g, the mass of a 6-ply paper bag to hold 50 kg of cement is approximately 400 g, the mass of a light weight jute bag to hold 50 kg of cement is approximately 450 g, the mass of a HDPE/PP woven sack to hold 50 kg of cement is approximately 70 g/71 g respectively, and the mass of a jute synthetic union bag to hold 50 kg of cement is approximately 420 g.
ANNEX C

(Foreword)

COMMITTEE COMPOSITION

Cement and Concrete Sectional Committee, CED 2

<table>
<thead>
<tr>
<th>Organization</th>
<th>Representative(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delhi Tourism and Transportation Development Corporation Ltd, New Delhi</td>
<td>Shri Jose Kurian (Chairman)</td>
</tr>
<tr>
<td>ACC Ltd, Mumbai</td>
<td>Shri S. A. Khadilkar</td>
</tr>
<tr>
<td>Ambuja Cements Limited, Mumbai</td>
<td>Shri Sharad Kumar Shrivastava (Alternate)</td>
</tr>
<tr>
<td>Association of Consulting Civil Engineers (India), Bangalore</td>
<td>Shri C. M. Dordi</td>
</tr>
<tr>
<td>Atomic Energy Regulatory Board, Mumbai</td>
<td>Dr. A. N. Vyasrao (Alternate)</td>
</tr>
<tr>
<td>Builders’ Association of India, Mumbai</td>
<td>Shri Avishek D. Shrode</td>
</tr>
<tr>
<td>Building Materials and Technology Promotion Council, New Delhi</td>
<td>Shri K. K. Meghavasundham (Alternate)</td>
</tr>
<tr>
<td>Cement Corporation of India Limited, New Delhi</td>
<td>Shri L. R. Bishnani</td>
</tr>
<tr>
<td>Cement Manufacturers’ Association, Noida</td>
<td>Shri Saurav Acharya (Alternate)</td>
</tr>
<tr>
<td>Central Board of Irrigation and Power, New Delhi</td>
<td>Dr. Narendra D. Patel</td>
</tr>
<tr>
<td>Central Building Research Institute (CSIR), Roorkee</td>
<td>Shri J. K. Prasad</td>
</tr>
<tr>
<td>Central Public Works Department, New Delhi</td>
<td>Shri C. N. Jha (Alternate)</td>
</tr>
<tr>
<td>Central Road Research Institute (CSIR), New Delhi</td>
<td>Shri R. R. Deshpande</td>
</tr>
<tr>
<td>Central Soil and Materials Research Station, New Delhi</td>
<td>Shri M. K. Agarwal</td>
</tr>
<tr>
<td>Central Water Commission, New Delhi</td>
<td>Shri N. A. Viswanathan</td>
</tr>
<tr>
<td>Commat Technologies Pvt Ltd, Kolkata</td>
<td>Dr. S. K. Hardoo (Alternate)</td>
</tr>
<tr>
<td>Construction Chemicals Manufacturers’ Association, Mumbai</td>
<td>Secretary</td>
</tr>
<tr>
<td>Construction Industry Development Council, New Delhi</td>
<td>Director (Civil) (Alternate)</td>
</tr>
<tr>
<td>Delhi Development Authority, New Delhi</td>
<td>Dr. B. K. Rao</td>
</tr>
<tr>
<td>Engineers India Limited, New Delhi</td>
<td>Dr. S. K. Agarwal (Alternate)</td>
</tr>
<tr>
<td>Fly Ash Unit, Department of Science and Technology, New Delhi</td>
<td>Shri A. K. Garg</td>
</tr>
<tr>
<td>Gammon India Limited, Mumbai</td>
<td>Shri Manu Amitabh (Alternate)</td>
</tr>
<tr>
<td>Grassim Industries Limited, Mumbai</td>
<td>Dr. Rakesh Kumar</td>
</tr>
<tr>
<td>Hindustan Construction Company Ltd, Mumbai</td>
<td>Dr. N. Mathur (Alternate)</td>
</tr>
<tr>
<td>Housing and Urban Development Corporation Limited, New Delhi</td>
<td>Shri Murari Ratnam</td>
</tr>
<tr>
<td>Indian Association of Structural Engineers, New Delhi</td>
<td>Shri N. Swakumar (Alternate)</td>
</tr>
<tr>
<td>Indian Institute of Spatience and Technology, New Delhi</td>
<td>Director (CMDD)(N&W)</td>
</tr>
<tr>
<td>India Infrastructure Development National Council</td>
<td>Deputy Director (CMDD) (NW&S) (Alternate)</td>
</tr>
<tr>
<td>Indus India Limited, Mumbai</td>
<td>Dr. A. K. Chatterjee</td>
</tr>
<tr>
<td>Infrastructure Development National Council</td>
<td>Shri Samir Subraker</td>
</tr>
<tr>
<td>Indus Infrastructure Development National Council</td>
<td>Shri Upen Patel (Alternate)</td>
</tr>
<tr>
<td>Indus Project Development National Council</td>
<td>Shri P. R. Swadup</td>
</tr>
<tr>
<td>Indus Project Development National Council</td>
<td>Shri Ravi Jain (Alternate)</td>
</tr>
<tr>
<td>Indus Project Development National Council</td>
<td>Chief Engineer (QAC)</td>
</tr>
<tr>
<td>Indus Project Development National Council</td>
<td>Director (Material Management) (Alternate)</td>
</tr>
<tr>
<td>Indian Institute of Technology and Development, New Delhi</td>
<td>Shri Vinay Kumar</td>
</tr>
<tr>
<td>Indian Institute of Technology and Development, New Delhi</td>
<td>Shri A. K. Misra (Alternate)</td>
</tr>
<tr>
<td>Indian Institute of Technology and Development, New Delhi</td>
<td>Dr. Vimal Kumar</td>
</tr>
<tr>
<td>Indus Project Development National Council</td>
<td>Shri Venkataramana N. Hegdeale</td>
</tr>
<tr>
<td>Indian Institute of Technology and Development, New Delhi</td>
<td>Shri Manish Mokal (Alternate)</td>
</tr>
<tr>
<td>Indus Project Development National Council</td>
<td>Shri A. K. Jain</td>
</tr>
<tr>
<td>Infrastructure Development National Council</td>
<td>Dr. S. P. Pandey (Alternate)</td>
</tr>
<tr>
<td>Indus Project Development National Council</td>
<td>Dr. Chetan Haazaree</td>
</tr>
<tr>
<td>Indian Institute of Technology and Development, New Delhi</td>
<td>Shri Manohar Cheralal (Alternate)</td>
</tr>
<tr>
<td>Indus Project Development National Council</td>
<td>Shri Deepak Bansal</td>
</tr>
<tr>
<td>Indian Institute of Technology and Development, New Delhi</td>
<td>Prof Mahesh Tandon</td>
</tr>
<tr>
<td>Indus Project Development National Council</td>
<td>Shri Ganesh Juneja (Alternate)</td>
</tr>
</tbody>
</table>
Organization

Indian Bureau of Mines, Nagpur
Indian Concrete Institute, Chennai
Indian Institute of Technology Kanpur, Kanpur
Indian Institute of Technology Madras, Chennai
Indian Institute of Technology Roorkee, Roorkee
Indian Roads Congress, New Delhi
Institute for Solid Waste Research & Ecological Balance, Visakhapatnam
Jai Prakash Associates Ltd, New Delhi
Lafarge India Pvt Ltd, Mumbai
Madras Cements Ltd, Chennai
Military Engineer Services, Engineer-in-Chief’s Branch, Army Headquarter, New Delhi
Ministry of Road Transport & Highways, New Delhi
National Council for Cement and Building Materials, Ballabgarh
National Test House, Kolkata
Nuclear Power Corporation of India Ltd, Mumbai
OCL India Limited, New Delhi
Public Works Department, Government of Tamil Nadu, Chennai
Research, Design & Standards Organization (Ministry of Railways), Lucknow
Sanghi Industries Limited, Sanghi Nagar
Structural Engineering Research Centre (CSIR), Chennai
The India Cements Limited, Chennai
The Indian Hume Pipe Company Limited, Mumbai
The Institution of Engineers (India), Kolkata
The National Institute of Engineering, Mysore
Ultra Tech Cement Ltd, Mumbai
Voluntary Organization in Interest of Consumer Education, New Delhi
In personal capacity (36, Old Sneh Nagar, Wardha Road, Nagpur)
In personal capacity (EA-92, Maya Enclave, Hari Nagar, New Delhi)
In personal capacity (E-1, 402, White House Apartments, R.T. Nagar, Bangalore)

Representative(s)

Shri S. S. DAS
Shri Meerul Hasan (Alternate)
Shri Vivek Naik
Secretary General (Alternate)
Dr. Sudhir Misra
Dr. Sudh K. Mishra (Alternate)
Prof. Devdas Menon
Prof. Manu Santhanam (Alternate)
Prof. V. K. Gupta
Dr. Bhupinder Singh (Alternate)
Secretary General
Director (Alternate)
Dr. N. Bhanumathidas
Shri N. Kalidas (Alternate)
Shri M. K. Groshi
Ms. Madhumita Basu
Shri Sanjay Jain (Alternate)
Shri Balaji K. Moorthy
Shri Anil Kumar Pillai (Alternate)
Maj-Gen N. R. K. Babu
Shri S. K. Jain (Alternate)
Shri A. N. Dhabapkar
Shri S. K. Pure (Alternate)
Shri V. V. Arora
Dr. M. M. Ali (Alternate)
Shri B. R. Meena
Shrimati S. A. Kaushal (Alternate)
Shri U. S. P. Verma
Shri Arvind Shrivastava (Alternate)
Dr. S. C. Ahluwalia
Superintendent Engineer
Executive Engineer (Alternate)
Shri R. M. Sharma
Shri V. K. Yadava (Alternate)
Shri D. B. N. Rao
Dr. H. K. Patnaik (Alternate)
Dr. K. RamaniJayulu
Shri P. SriNivasan (Alternate)
Dr. D. Venkateswaran
Shri S. Gopinath (Alternate)
Shri P. R. Bhut
Shri S. J. Shah (Alternate)
Dr. H. C. Visvesvaraya
Shri S. H. Jain (Alternate)
Dr. N. Suresh
Shri H. N. Ramathirtha (Alternate)
Dr. Subrato Chowdhury
Shri Biswajit Diwar (Alternate)
Shri M. A. U. Khan
Shri H. Wadwha (Alternate)
Shri L. K. Jain
Shri R. C. Wason
Shri S. A. Reddi
Organization **Representative(s)**
BIS Directorate General Shri A. K. SAINI, Scientist 'G' and Head (Civ Engg) [Representing Director General (Ex-officio)]

Member Secretaries
Shri SANJAY PANT
Scientist ‘E’ & Director (Civ Engg), BIS
Shri S. ABHIN KUMAR
Scientist ‘C’ (Civ Engg), BIS

Cement, Pozzolana and Cement Additives Subcommittee, CED 2 : 1

<table>
<thead>
<tr>
<th>Organization</th>
<th>Representative(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC Ltd, Mumbai</td>
<td>Shri S. A. REDDI (Convener)</td>
</tr>
<tr>
<td>AIMIL Ltd, New Delhi</td>
<td>Shri S. A. KHADILKAR</td>
</tr>
<tr>
<td>All India Mini Cement Manufacturers’ Association, Hyderabad</td>
<td>Dr. M. SHARMA</td>
</tr>
<tr>
<td>Ambuja Cements Ltd, Ahmedabad</td>
<td>Shri S. R. B. RAMIRESH CHANDRA</td>
</tr>
<tr>
<td>Atomic Energy Regulatory Board, Mumbai</td>
<td>Shri C. M. DORDI</td>
</tr>
<tr>
<td>Building Materials and Technology Promotion Council, New Delhi</td>
<td>Shri J. K. PRASAD</td>
</tr>
<tr>
<td>Cement Corporation of India Ltd, New Delhi</td>
<td>Shri M. K. AGARWAL</td>
</tr>
<tr>
<td>Cement Manufacturers’ Association, Noida</td>
<td>Shri SUBRATO CHOWDHURY</td>
</tr>
<tr>
<td>Central Building Research Institute (CSIR), Roorkee</td>
<td>Dr. B. K. RAO</td>
</tr>
<tr>
<td>Central Electricity Authority, New Delhi</td>
<td>Shri Y. K. SHARMA</td>
</tr>
<tr>
<td>Central Pollution Control Board, Delhi</td>
<td>Shri J. S. KAMYOTRA</td>
</tr>
<tr>
<td>Central Public Works Department, New Delhi</td>
<td>Shri A. K. GARG</td>
</tr>
<tr>
<td>Central Road Research Institute (CSIR), New Delhi</td>
<td>Shri MANU AMITABH (Alternate)</td>
</tr>
<tr>
<td>Central Soil and Materials Research Station, New Delhi</td>
<td>Dr. A. K. MISRA</td>
</tr>
<tr>
<td>Central Water Commission, New Delhi</td>
<td>Shri J. B. SENGUPTA (Alternate)</td>
</tr>
<tr>
<td>Dalma Cement (Bharat) Limited, New Delhi</td>
<td>Shri MURARI RAMAN</td>
</tr>
<tr>
<td>Dalmia Cement (Bharat) Limited, New Delhi</td>
<td>Shri N. SIVAKUMAR (Alternate)</td>
</tr>
<tr>
<td>Director, CMDD (N&W)</td>
<td>Shri K. C. NARANG</td>
</tr>
<tr>
<td>Deputy Director, CMDD (NW&S) (Alternate)</td>
<td>Shri C. S. SHARMA (Alternate)</td>
</tr>
<tr>
<td>Grasim Industries Limited, Mumbai</td>
<td>Dr. VIMAL KUMAR</td>
</tr>
<tr>
<td>Gujarat Engineering Research Institute, Vadodara</td>
<td>Shri AVINASH Y. MAHENDRAKAR</td>
</tr>
<tr>
<td>Hindustan Construction Company Limited, Mumbai</td>
<td>Shri MANISH MOHAL (Alternate)</td>
</tr>
<tr>
<td>Indian Concrete Institute, Chennai</td>
<td>Shri A. K. JAIN</td>
</tr>
<tr>
<td>Indian Concrete Institute, Chennai</td>
<td>Dr. S. P. PANDE (Alternate)</td>
</tr>
<tr>
<td>Indian Concrete Institute, Chennai</td>
<td>Shri B. M. RAO</td>
</tr>
<tr>
<td>Indian Concrete Institute, Chennai</td>
<td>Shri K. L. DAVE (Alternate)</td>
</tr>
<tr>
<td>Indian Concrete Institute, Chennai</td>
<td>Shri S. K. DHARMADHIKAR</td>
</tr>
<tr>
<td>Indian Concrete Institute, Chennai</td>
<td>Shri K. R. VISWANATH (Alternate)</td>
</tr>
<tr>
<td>Indian Concrete Institute, Chennai</td>
<td>Dr ANANT M. PANDE (Alternate)</td>
</tr>
</tbody>
</table>
Organization

Indorama Cement Limited, Mumbai
Institute for Solid Waste Research & Ecological Balance (INSWAREB), Visakhapatnam
Lafarge India Limited, Mumbai
Madras Cements Ltd, Chennai
Maharashtra Engineering Research Institute, Nasik
Ministry of Shipping, Road Transport & Highways, New Delhi
National Council of Cement and Building Materials, Ballabgarh
Ministry of Commerce & Industry, New Delhi
National Hydroelectric Power Corporation Limited, Faridabad
NTPC Ltd, New Delhi
OCL India Limited, New Delhi
Orkla India Pvt Ltd, Navi Mumbai
Public Works Department, Government of Tamil Nadu, Chennai
Ready Mixed Concrete Manufacturers’ Association, Mumbai
Research, Design and Standards Organization (Ministry of Railways), Lucknow
Tamil Nadu Minerals Limited, Chennai
Tata Steel Ltd, Jamshedpur
Ultra Tech Cement Ltd, Mumbai
In personal capacity (II/69, President’s Estate, New Delhi)

Representative(s)

Shri Sanjeev Paradasspuria (Alternate)
Bhag R. V. Seetaramaiah (Alternate)
Dr. N. Bhanumathidas
Shri N. Karidas (Alternate)
Shri M. K. Chaudhary
Shri Anil Parashar (Alternate)
Shri Balaji K. Moodi
Shri Anil Kumar Pillai (Alternate)
Scientific Research Officer
Assistant Research Officer (Alternate)
Brig Rajesh Tyagi
Col Mukesh Chopra (Alternate)
Shri P. K. Jain
Shri Shaish Kumar (Alternate)
Shri A. K. Sharma
Shri Harichand Abora (Alternate)
Dr. M. M. Ali
Dr. S. Harish (Alternate)
Shri A. K. Jain
Shri D. V. S. Prasad
Dr. Mostfayed Devi (Alternate)
Shri A. V. Vyasaraman
Shri Masoom Ali (Alternate)
Dr. S. C. Ahluwalia
Shri Kishenendra Nath P.
Shri Prashant Jha (Alternate)
Joint Chief Engineer (Irrigation)
Executive Engineer (Alternate)
Shri Vidyakumar R. Kulkarni
Deputy Director (B&F)
Asstt Design Engineer (B&F) (Alternate)

Panel for Revision of Cement Standards, CED 2 : 1/P1

In personal capacity (II/69, President’s Estate, New Delhi)
AIMIL Ltd, New Delhi
Cement Manufacturers’ Association, Noida
Central Building Research Institute (CSIR), Roorkee
Central Public Works Department, New Delhi
Military Engineer Services, Engineer-in-Chief’s Branch, Army Headquarter, New Delhi
National Council for Cement and Building Materials, Ballabgarh
Ready Mixed Concrete Manufacturers’ Association, Mumbai

Shri K. H. Babu (Convener)
Dr. V. M. Sharma
Shri Aman Khullar (Alternate)
Dr. D. Ghosh
Shri Sanjay Jain (Alternate)
Dr. S. K. Agarwal
Shri Neeraj Jain (Alternate)
Shri A. K. Garg
Shri Manu Amitabh (Alternate)
Shri P. K. Jain
Lt-Col Pradeep Tiwari (Alternate)
Dr. S. Harish
Dr. U. K. Mandal (Alternate)
Shri Vidyakumar R. Kulkarni
Shri S. D. Govilkar (Alternate)
Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of ‘BIS Catalogue’ and ‘Standards : Monthly Additions’.

This Indian Standard has been developed from Doc No.: CED 2 (7672).

Amendments Issued Since Publication

<table>
<thead>
<tr>
<th>Amend No.</th>
<th>Date of Issue</th>
<th>Text Affected</th>
</tr>
</thead>
</table>

BUREAU OF INDIAN STANDARDS

Headquarters:
Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002
Telephones: 2323 0131, 2323 3375, 2323 9402 Website: www.bis.org.in

Regional Offices:

Central: Manak Bhavan, 9 Bahadur Shah Zafar Marg,
NEW DELHI 110002

Eastern: 1/14 C.I.T. Scheme VII M, V. I. P. Road, Kankurgachi,
KOLKATA 700054

Northern: SCO 335-336, Sector 34-A, CHANDIGARH 160022

Southern: C.I.T. Campus, IV Cross Road, CHENNAI 600113

Western: Manakalaya, E9 MIDC, Marol, Andheri (East),
MUMBAI 400093

Branches: AHMEDabad, BANGALORE, BHOPAL, BHUBANeshwar, COIMbatORE, DEHRADUN,
FARIDAbad, GHaziABad, GUWahATI, HYDERAbad, JAIPUR, KANpur, LUCKNOW,
NAGpur, PARwanoo, PATNA, PUNE, RAJKOT, THIRUVANANThAPURAM,
VISAKHApATNAM.

Published by BIS, New Delhi